

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 2104-2107

Synthesis of two piperidine alkaloids, (–)-deoxoprosopinine and (–)-deoxoprosophylline, from 6-hydroxylated dihydrosphingosine derivatives[☆]

Ken-ichi Fuhshuku[†] and Kenji Mori^{*}

Glycosphingolipid Synthesis Group, Laboratory for Immune Regulation, RIKEN Research Center for Allergy and Immunology, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan

Received 24 July 2007; accepted 23 August 2007

Abstract—(-)-Deoxoprosopinine 1 [(2S,3R,6S)-6-dodecyl-2-hydroxymethylpiperidin-3-ol] and (-)-deoxoprosophylline 3 [(2S,3R,6R)-6-dodecyl-2-hydroxymethylpiperidin-3-ol] were synthesized from (6*R*)- and (6*S*)-6-mesyloxydihydrosphingosine derivatives 7 and 7', respectively, by intramolecular cyclization to generate a piperidine ring. © 2007 Published by Elsevier Ltd.

1. Introduction

An African plant *Prosopis africana* produces several 2,6-disubstituted piperidin-3-ols as *Prosopis* alkaloids.² Their unique structures together with antibiotic and anaesthetic properties rendered the alkaloids **1–4** (Scheme 1) popular synthetic targets. Indeed, there have been at least 17 different syntheses reported of the enantiomers of deoxoprosopinine **1** and deoxoprosophylline **3**.^{3–19} These syntheses start from the chiral building blocks of natural (amino acids,^{3,7,8,12,16} malic acid,⁶ vitamin C¹⁰ and carbohydrates^{5,15,18,19}) or synthetic origins.^{4,9,11,13,14,17}

In continuation of our recent work on (+)-carpamic acid 5, we became interested in synthesizing 1 and 3 by cyclization of the derivatives of sphingosine 6. Our retrosynthetic analysis of (-)-1 and (-)-3 is shown in Scheme 1. The piperidine alkaloid 1 or 3 could be obtained by cyclization of 7 or 7' to generate a new C–N bond. The 6-mesyloxylated and protected dihydrosphingosine 7 or 7' would be prepared from the known compound 8 or 8', which served as the key intermediates for the synthesis of ceramides B, 4, 7 and 8, the 6-hydroxylated new ceramides in human skin.²⁰ The same C₁₈ carbon skeleton of **1**, **3** and **8** would make the present approach especially favourable. The intermediates **8** and **8'** were previously prepared from (*S*)-Garner's aldehyde 9^{21} while the enantiomers **10** and **10'** were secured by a lipase-catalyzed asymmetric process.²⁰

2. Results and discussion

Scheme 2 summarizes our synthesis of (-)-deoxoprosopinine 1 and (-)-deoxoprosophylline 3. Coupling of (S)-Garner's aldehyde 9 with (R)-3-tert-butyldimethylsilyl(TBS)oxy-1-pentadecyne 10 was executed as reported previously to give (4S,1'R,4'R)-8.²⁰ After removal of the TBS protecting group of 8, the resulting alkynediol 11 was hydrogenated over a palladium catalyst to give 6-hydroxylated dihydrosphingosine derivative (4S,1'R,4'R)-12. Treatment of 12 with aqueous acetic acid afforded triol (2S,3R,6R)-13. Protection of the 1,3-diol system of 13 as benzylidene acetal yielded (2S,4R,5S,3'R)-14, which was mesylated to furnish 7, the precursor for cyclization.

Treatment of mesylate 7 with sodium hydride in THF smoothly effected cyclization to give crystalline (1S,2S,4R,6S)-15 in 89% yield based on 14. Finally, removal of the benzylidene protective group with methanolic hydrogen chloride was followed by treatment with sodium hydroxide to give (-)-deoxoprosopinine 1, mp 87–88 °C, $[\alpha]_D^{24} = -14.3$ (*c* 0.54, CHCl₃). The overall yield of (-)-1

^{*} Synthesis of sphingosine relatives, Part 29. For Part 28, see: Ref. 1.

^{*} Corresponding author. Fax: +81 48 467 9381; e-mail: kjk-mori@ arion.ocn.ne.jp

[†]Present address: Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan.

^{0957-4166/\$ -} see front matter @ 2007 Published by Elsevier Ltd. doi:10.1016/j.tetasy.2007.08.028

Boc = t-BuOCO- ; Ms = MeSO₂- ; TBS = t-Bu(Me)₂Si-

Scheme 1. Retrosynthetic analysis of (-)-deoxoprosopinine 1 and (-)-deoxoprosophylline 3.

was 46% based on **8** (7 steps). In the same manner, (*S*)-**10**' was converted to (–)-deoxoprosophylline **3**, mp 88–89 °C, $[\alpha]_D^{24} = -14.2$ (*c* 0.58, CHCl₃). The overall yield of (–)-**3** was 34% based on **8**' (7 steps). The IR, ¹H and ¹³C NMR spectra of our synthetic (–)-**1** and (–)-**3** were identical to those reported previously.^{5,9,18}

3. Conclusion

A new and efficient synthesis of (-)-deoxoprosopinine **1** and (-)-deoxoprosophylline **3** was accomplished by employing the cyclization of 6-mesyloxydihydrosphingosine derivatives **7** and **7'** as the key step. Sphingosine derivatives have proven to be versatile starting materials for the synthesis of piperidine alkaloids.

4. Experimental

4.1. General

All melting points (mp) are uncorrected. Refractive indices (n_D) were measured on an Atago 1T refractometer. Optical rotation values were measured on a Jasco DIP-1010 instrument. IR spectra were recorded on Jasco FT/IR-460 plus

Scheme 2. Synthesis of (–)-deoxoprosopinine 1 and (–)-deoxoprosophylline 3. Reagents and conditions: (a) TBAF, THF, 99%; (b) H_2 , $Pd(OH)_2/C$, EtOAc, 86%; (c) AcOH– H_2O (8:2), 94%; (d) PhCH(OMe)_2, PPTS, CH₂Cl₂, 89%; (e) MsCl, C₅H₅N, 0 °C; (f) NaH, THF, reflux, 89% (2 steps); (g) (i) HCl in MeOH; (ii) NaOH, H₂O, 72%.

spectrometer. ¹H and ¹³C NMR spectra were recorded on Jeol AL-270 (270 MHz) and AL-400 (400 MHz) (CHCl₃ at $\delta_{\rm H} = 7.26$ and $\delta_{\rm C} = 77.00$ as an internal standard). Mass spectra were recorded on JMS-SX102A. Column chromatography was carried out with Silica Gel 60 (spherical; 100–210 µm, 37558-79) purchased from Kanto Chemical Co., and thin-layer chromatography was carried out with Merck Silica Gel 60 F₂₅₄ thin-layer plates (1.05715).

4.2. *tert*-Butyl 4-(1',4'-dihydroxyhexadecyl)-2,2-dimethyl-3-oxazolidinecarboxylate 12 and 12'

4.2.1. (4S,1'R,4'R)-Isomer 12. To an ice-cooled solution of (4S,1'R,4'R)-8 (3.98 g, 7.01 mmol) in dry THF (56.0 mL), a solution of TBAF (1.0 M in THF, 14.0 mL, 14.0 mmol) was added. The reaction mixture was stirred for 2 h at room temperature, and diluted with water. The mixture was extracted with EtOAc. The organic extract was washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica

gel column chromatography (100 g). Elution with hexane-EtOAc (10:1 to 2:1) afforded (4*S*,1'*R*,4'*R*)-11 (3.16 g, 99%). This compound was immediately employed for the next step without further purification. To a suspension of Pd(OH)₂ (0.275 g, 20% on carbon) in EtOAc (20.0 mL), 11 (2.72 g, 6.00 mmol) was added. The reaction mixture was vigorously stirred for 7 days at room temperature under a H₂ atmosphere, and filtered through a Celite pad. The filter cake was washed with EtOAc and concentrated in vacuo. The residue was purified by silica gel column chromatography (150 g). Elution with hexane-EtOAc (10:1 to 2:1) afforded 12 (2.37 g, 86%), mp 62.0-63.0 °C (colourless powder from hexane–EtOAc); $[\alpha]_{\rm D}^{26} = -16.8 \ (c \ 1.02, \ {\rm CHCl}_3); \ {\rm IR} \ ({\rm KBr}) \ v_{\rm max} \ 3400, \ 1697,$ 1676; $\delta_{\rm H}$ (270 MHz, CDCl₃): 0.88 (3H, t, J 6.6), 1.25– 1.75 (41H, m), 2.80-2.97 (2H, m), 3.52-4.42 (5H, m); Anal. Calcd for C₂₆H₅₁NO₅: C, 68.23; H, 11.23; N, 3.06. Found: C, 68.05; H, 11.41; N, 3.05.

4.2.2. (4*S*,1′*R*,4′*S*)-Isomer 12′. In the same manner, (4*S*,1′*R*,4′*S*)-8′ (3.12 g, 5.49 mmol) yielded 1.93 g (78%) of 12′, mp 106.5–107.5 °C (colourless powder from hexane–EtOAc); $[\alpha]_D^{26} = -15.1$ (*c* 1.03, CHCl₃); IR (KBr) v_{max} 3302, 1694; δ_H (270 MHz, CDCl₃): 0.88 (3H, t, *J* 6.6), 1.25–1.72 (41H, m), 3.24 (2H, m), 3.57 (2H, m) 3.73–4.43 (3H, m); Anal. Calcd for C₂₆H₅₁NO₅: C, 68.23; H, 11.23; N, 3.06. Found: C, 68.00; H, 11.39; N, 3.00.

4.3. 2-tert-Butoxycarbamidoctadecane-1,3,6-triol 13 and 13'

4.3.1. (2S,3R,6R)-Isomer 13. A mixture of (4S,1'R,4'R)-12 (602 mg, 1.32 mmol) and AcOH (80% in water, 26.0 mL) was stirred for 24 h at room temperature and neutralized with a saturated aqueous NaHCO₃ solution. The mixture was extracted with CHCl₃. The organic extract was washed with a saturated aqueous NaHCO₃ solution, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (30 g). Elution with CHCl₃-MeOH (60:1 to 20:1) afforded 13 (514 mg, 94%), mp 105.0–106.0 °C (colourless powder from CHCl₃); $[\alpha]_D^{26} = +3.3$ (c 0.53, CHCl₃); IR (KBr) v_{max} 3353, 1669, 1529; δ_{H} (270 MHz, CDCl₃): 0.88 (3H, t, J 6.6), 1.26 (20H, m), 1.45 (9H, s), 1.39-1.74 (6H, m), 3.10 (3H, br s), 3.53 (1H, br s), 3.69-3.80 (3H, m), 3.99 (1H, m), 5.37 (1H, br s); $\delta_{\rm C}$ (67.5 MHz, CDCl₃): 14.2, 22.8, 25.9, 28.5, 29.4, 29.7, 30.1, 32.0, 33.2, 37.2, 55.0, 62.7, 71.9, 73.9, 79.8, 155.9; Anal. Calcd for C₂₃H₄₇NO₅: C, 66.15; H, 11.34; N, 3.35. Found: C, 65.91; H, 11.52; N, 3.33.

4.3.2. (2*S*,3*R*,6*R*)-Isomer 13'. In the same manner, (4*S*,1'*R*,4'*S*)-12' (298 mg, 0.651 mmol) yielded 252 mg (93%) of 13', mp 98.0–99.0 °C (colourless powder from CHCl₃); $[\alpha]_D^{26} = +5.8$ (*c* 0.53, CHCl₃); IR (KBr) v_{max} 3364, 1694, 1567; δ_H (270 MHz, CDCl₃): 0.87 (3H, t, *J* 6.6), 1.25 (20H, m), 1.44 (9H, s), 1.38–1.75 (6H, m), 3.50 (1H, br s), 3.59–3.80 (6H, m), 3.96 (1H, m), 5.45 (1H, br s); δ_C (67.5 MHz, CDCl₃): 14.2, 22.8, 25.8, 28.5, 29.4, 29.7, 29.8, 31.6, 32.0, 34.4, 37.9, 55.3, 62.5, 72.6, 74.3, 79.7, 156.0; Anal. Calcd for C₂₃H₄₇NO₅: C, 66.15; H, 11.34; N, 3.35. Found: C, 66.04; H, 11.54; N, 3.31.

4.4. 5-*tert*-Butoxycarbamido-4-(3'-hydroxypentadecyl)-2-phenyl-1,3-dioxacyclohexane 14 and 14'

4.4.1. (2S,4R,5S,3'R)-Isomer 14. A mixture of (2S,3R, 6*R*)-13 (512 mg, 1.23 mmol), PhCH(OMe)₂ (368 μL, 2.45 mmol), PPTS (340 mg, 1.35 mmol) and CH₂Cl₂ (12.0 mL) was stirred for 24 h at room temperature and neutralized with a saturated aqueous NaHCO₃ solution. The mixture was extracted with Et₂O. The organic extract was successively washed with a saturated aqueous NaHCO₃ solution, water and brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (25 g). Elution with hexane-EtOAc (10:1 to 3:1) afforded 14 (552 mg, 89%), mp 120.5–121.0 °C (colourless powder from hexane–EtOAc); $[\alpha]_D^{26} = +25.0$ (*c* 0.54, CHCl₃); IR (KBr) v_{max} 3346, 1683, 1531; δ_{H} (270 MHz, CDCl₃): 0.88 (3H, t, J 6.6), 1.25 (22H, m), 1.46 (9H, s), 1.55–2.00 (5H, m), 3.46-3.73 (4H, m), 4.30 (2H, m), 5.45 (1H, s), 7.30-7.40 (3H, m), 7.46–7.49 (2H, m); δ_C (67.5 MHz, CDCl₃): 14.2, 22.8, 25.8, 28.0, 28.4, 28.5, 29.4, 29.71, 29.74, 32.0, 32.9, 37.5, 47.4, 69.9, 71.8, 80.0, 81.3, 101.0, 126.0, 128.2, 128.8, 137.6, 155.0; Anal. Calcd for C₃₀H₅₁NO₅: C, 71.25; H, 10.16; N, 2.77. Found: C, 71.02; H, 10.16; N, 2.72.

4.4.2. (2*S*,4*R*,5*S*,3′*S*)-Isomer 14′. In the same manner, (2*S*,3*R*,6*S*)-13′ (612 mg, 1.47 mmol) yielded 646 mg (87%) of 14′, mp 92.0–93.0 °C (colourless powder from hexane–EtOAc); $[\alpha]_D^{26} = +19.7$ (*c* 0.54, CHCl₃); IR (KBr) ν_{max} 3355, 1685, 1525; $\delta_{\rm H}$ (270 MHz, CDCl₃): 0.88 (3H, t, *J* 6.6), 1.25 (22H, m), 1.45 (9H, s), 1.59–1.91 (5H, m), 3.47–3.76 (4H, m), 4.30 (2H, m), 5.45 (1H, s), 7.29–7.40 (3H, m), 7.45–7.49 (2H, m); $\delta_{\rm C}$ (67.5 MHz, CDCl₃): 14.2, 22.8, 25.8, 27.8, 28.4, 28.5, 29.4, 29.72, 29.74, 29.8, 32.0, 32.6, 37.8, 46.9, 69.9, 71.5, 80.1, 80.9, 101.1, 126.0, 128.2, 128.9, 137.6, 155.1; Anal. Calcd for C₃₀H₅₁NO₅: C, 71.25; H, 10.16; N, 2.77. Found: C, 71.23; H, 10.21; N, 2.67.

4.5. *tert*-Butyl 6-dodecyl-2-phenylhexahydro[1,3]dioxino-[5,4-*b*]pyridine-5-carboxylate 15 and 15'

4.5.1. (1S,2S,4R,6S)-Isomer 15. To an ice-cooled solution of (2S,4R,5S,3'R)-14 (552 mg, 1.09 mmol) in dry pyridine (9.0 mL), MsCl (340 µL, 4.39 mmol) was added in one portion. The reaction mixture was stirred for 48 h at 4 °C and diluted with water. The mixture was extracted with Et₂O. The organic extract was washed with a saturated aqueous CuSO₄ solution, water, a saturated aqueous NaHCO₃ solution and brine, dried over anhydrous MgSO₄ concentrated in vacuo. The residual 7 was dissolved in dry THF (10.0 mL), cooled to 0 °C, and NaH added (60% in mineral oil, 135 mg, 3.38 mmol). The reaction mixture was stirred at reflux for 48 h and diluted with water. The mixture was extracted with Et₂O. The organic extract was washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (30 g). Elution with hexane-EtOAc (30:1 to 10:1) afforded 15 (474 mg, 89%, 2 steps), mp 81.0-82.0 °C (colourless needles from hexane–EtOAc); $[\alpha]_D^{26} = -24.3$ (c 0.54, CHCl₃); IR (KBr) v_{max} 1699; δ_H (270 MHz, CDCl₃): 0.89 (3H, t, *J* 6.6), 1.27 (22H, m), 1.46 (9H, s), 1.41–1.98 (4H, m), 3.33 (1H, ddd, *J* 4.6, 9.9, 9.9), 3.67 (1H, ddd, *J* 4.9, 9.6, 9.6), 4.32 (1H, br s), 4.45 (1H, dd, *J* 10.9, 10.9), 4.83 (1H, dd, *J* 4.0, 11.2), 5.57 (1H, s), 7.29–7.40 (3H, m), 7.47–7.52 (2H, m); $\delta_{\rm C}$ (67.5 MHz, CDCl₃): 14.2, 22.8, 26.0, 26.4, 26.5, 28.5, 29.4, 29.6, 29.7, 32.0, 52.3, 52.7, 70.7, 78.3, 80.1, 101.1, 126.0, 128.2, 128.8, 137.9, 154.6; HRMS (FAB): $[M+H]^+$ calcd for $C_{30}H_{49}NO_4^+$, 487.3662; found, 487.3660.

4.5.2. (1*S*,2*S*,4*R*,6*R*)-Isomer 15'. In the same manner, (2*S*,4*R*,5*S*,3'*S*)-14 (304 mg, 0.601 mmol) yielded 201 mg (69%, 2 steps) of 15' as a colourless oil, $n_D^{26} = 1.4960$; [α]_D²⁶ = -24.3 (*c* 0.54, CHCl₃); IR (KBr) ν_{max} 1696; δ_H (270 MHz, CDCl₃): 0.89 (3H, t, *J* 6.6), 1.27 (20H, m), 1.48 (9H, s), 1.44–1.79 (4H, m), 2.01–2.15 (2H, m), 3.51–3.65 (2H, m), 4.01 (1H, m), 4.16 (1H, ddd, *J* 5.6, 10.2, 10.2), 4.92 (1H, m), 5.57 (1H, s), 7.30–7.41 (3H, m), 7.48–7.52 (2H, m); δ_C (67.5 MHz, CDCl₃): 14.7, 23.2, 24.3, 24.6, 27.7, 29.0, 29.9, 30.13, 30.17, 30.21, 32.4, 39.0, 52.3, 54.3, 72.2, 76.5, 80.6, 102.4, 126.6, 128.7, 129.3, 138.2, 156.3; HRMS (FAB): [M+H]⁺ calcd for $C_{30}H_{49}NO_4^+$, 487.3662; found, 487.3665.

4.6. 6-Dodecyl-2-hydroxymethylpiperidin-3-ol 1 and 3

4.6.1. (2S,3R,6S)-Isomer, (-)-deoxoprosopinine 1. A mixture of (1S,2S,4R,6S)-15 (77.4 mg, 0.159 mmol) and dry HCl (10% in MeOH, 3.2 mL) was stirred for 48 h at room temperature and concentrated in vacuo. The residue was mixed with a solution of NaOH (15% in water, 3.2 mL) and stirred for 3 h at room temperature. The mixture was extracted with CH2Cl2, dried over MgSO4 and concentrated in vacuo. The residue was purified by silica gel column chromatography (2 g). Elution with toluene-EtOH (1:0 to 6:1) afforded (-)-deoxoprosopinine 1 (34.0 mg, 72%), mp 87.0–88.0 °C (colourless needles from CHCl₃) (Ref. 5: mp 89.0–89.5 °C); $[\alpha]_D^{24} = -14.3$ (*c* 0.54, CHCl₃) {Ref. 5: $[\alpha]_D^{21.5} = -15.9$ (*c* 0.28, CHCl₃)}; IR (KBr) ν_{max} 3372, 3114, 2920, 2849, 1451, 1055; $\delta_{\rm H}$ (400 MHz, CDCl₃): 0.88 (3H, t, J 6.5, Me), 1.26 (22H, m, 1', 2', 3', 4', 5', 6', 7', 8', 9', 10', 11'-H₂), 1.45–1.79 (4H, m, 4, 5-H₂), 2.08 (3H, br s, OH × 2, NH), 2.77 (1H, m, 6-H), 2.88 (1H, m, 2-H), 3.54 (1H, m, 3-H), 3.61 (1H, dd, J 5.6, 10.6, 2-CHH-OH), 3.66 (1H, dd, J 8.0, 10.4, 2-CHH–OH); δ_C (100 MHz, CDCl₃): 14.2, 22.8, 26.5, 27.4, 28.7, 29.4, 29.7, 29.8, 32.0, 34.0, 49.8, 58.0, 62.3, 68.1; HRMS (FAB): [M+H]⁺ calcd for C₁₈H₃₇NO₂⁺, 299.2824; found, 299.2826.

4.6.2. (2*S*,3*R*,6*R*)-Isomer, (-)-deoxoprosophylline 3. In the same manner, (1S,2S,4R,6R)-15' (80.4 mg, 0.165 mmol) yielded 38.6 mg (78%) of 3, mp 88.0–89.0 °C (colourless needles from CHCl₃) (Ref. 5: mp 90.5 °C); $[\alpha]_D^{24} = -14.2$ (*c* 0.58, CHCl₃) {Ref. 5: $[\alpha]_D^{21} = -13.9$ (*c* 0.25, CHCl₃)}; IR (KBr) v_{max} 3267, 2922, 2850, 1468, 1059; δ_H (400 MHz, CDCl₃): 0.88 (3H, t, *J* 6.5, Me), 1.12 (1H, dddd, *J* 3.4, 13.3, 13.3, 13.3, 5-H), 1.25–1.43 (23H, m, 4-H, 1', 2', 3', 4', 5', 6', 7', 8', 9', 10', 11'-H₂), 1.74 (1H, m, 5-H), 2.04 (1H, dd, *J* 3.6, 12.3, 4-H), 2.19 (3H, br s, OH × 2, NH),

2.52–2.59 (2H, m, 2, 6-H), 3.46 (1H, ddd, *J* 4.6, 9.1, 10.6, 3-H), 3.70 (1H, dd, *J* 5.3, 10.9, 2-*CH*H–OH), 3.83 (1H, dd, *J* 4.8, 10.6, 2-*C*H*H*–OH); $\delta_{\rm C}$ (100 MHz, CDCl₃): 14.2, 22.8, 26.3, 29.4, 29.69, 29.74, 29.9, 31.3, 32.0, 34.0, 36.7, 56.0, 63.2, 64.8, 70.8; HRMS (FAB): [M+H]⁺ calcd for C₁₈H₃₇NO₂⁺, 299.2824; found, 299.2824.

Acknowledgement

Our thanks are due to Dr. Y. Masuda for his kind supply of the starting materials, (R)-10 and (S)-10'.

References

- 1. Masuda, Y.; Tashiro, T.; Mori, K. *Tetrahedron: Asymmetry* 2006, 17, 3380–3385.
- Khuong-Huu, Q.; Ratle, G.; Monseur, X.; Goutarel, R. Bull. Soc. Chim. Belges 1972, 81, 425–441.
- Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khuong-Huu, Q. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 488–492, [synthesis of (-)-1 and (-)-3].
- Ciufolini, M. A.; Hermann, C.; Whitmire, K. H.; Byrne, N. E. J. Am. Chem. Soc. 1989, 111, 3473–3475, [synthesis of (+)-1'].
- Takao, K.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; Tadano, K.; Ogawa, S. *Tetrahedron* **1994**, *50*, 5681–5704, [synthesis of (-)-1 and (-)-3].
- Yuasa, Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1 1996, 793–802, [synthesis of (-)-1].
- Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y. *Tetrahedron: Asymmetry* 1997, *8*, 3887–3893, [synthesis of (+)-1' and (-)-3].
- 8. Ojima, I.; Vidal, E. S. J. Org. Chem **1998**, 63, 7999–8003, [synthesis of (+)-2' and (-)-3].
- Agami, C.; Couty, F.; Lam, H.; Mathieu, H. Tetrahedron 1998, 54, 8783–8796, [synthesis of (-)-1].
- 10. Herdeis, C.; Tesler, J. *Eur. J. Org. Chem.* **1999**, 1407–1414, [synthesis of (+)-**3**'].
- Yang, C.; Liao, L.; Xu, Y.; Zhang, H.; Xia, P.; Zhou, W.-S. *Tetrahedron: Asymmetry* 1999, 10, 2311–2318, [synthesis of (+)-3'].
- 12. Datta, A.; Kumar, J. S. R.; Roy, S. *Tetrahedron* **2001**, *57*, 1169–1173, [synthesis of (-)-**3**].
- Comins, D. L.; Sandelier, M. J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829–6832, [synthesis of (+)-1'].
- Ma, N.; Ma, D. Tetrahedron: Asymmetry 2003, 14, 1403– 1406, [synthesis of (-)-3].
- Dransfield, P. J.; Gore, P. M.; Prokes, I.; Shipman, M.; Slawin, A. M. Z. Org. Biomol. Chem. 2003, 1, 2723–2733, [synthesis of (+)-3'].
- Jourdant, A.; Zhu, J. *Heterocycles* 2004, 64, 249–259, [synthesis of (-)-3].
 Chavan, S. P.; Praveen, C. *Tetrahedron Lett.* 2004, 45, 421–
- Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421–423, [synthesis of (-)-3 and (+)-3'].
- Wang, Q.; Sasaki, N. A. J. Org. Chem. 2004, 69, 4767–4773, [synthesis of (+)-1'].
- Tzanetou, E. N.; Kasiotis, K. M.; Magiatis, P.; Haroutounian, S. A. *Molecules* 2007, *12*, 735–744, [synthesis of (+)-3'].
- Masuda, Y.; Mori, K. Eur. J. Org. Chem. 2005, 4789– 4800.
- 21. Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361-2364.